PropertyValue
dbpedia-owl:abstract
  • In mathematics, the axiom of power set is one of the Zermelo–Fraenkel axioms of axiomatic set theory.In the formal language of the Zermelo–Fraenkel axioms, the axiom reads:where P stands for the power set of A, . In English, this says:Given any set A, there is a set such that, given any set B, B is a member of if and only if every element of B is is also an element of A.Subset is not used in the formal definition because the subset relation is defined axiomatically; axioms must be independent from each other. By the axiom of extensionality this set is unique, which means that every set has a power set.The axiom of power set appears in most axiomatizations of set theory. It is generally considered uncontroversial, although constructive set theory prefers a weaker version to resolve concerns about predicativity.
  • En teoría de conjuntos, el axioma del conjunto potencia es un axioma que postula la existencia del conjunto potencia de cualquier conjunto; es decir, del conjunto de todos los subconjuntos de un conjunto dado.
dbpedia-owl:wikiPageID
  • 78697 (xsd:integer)
dbpedia-owl:wikiPageInterLanguageLink
dbpedia-owl:wikiPageLength
  • 3647 (xsd:integer)
dbpedia-owl:wikiPageOutDegree
  • 21 (xsd:integer)
dbpedia-owl:wikiPageRevisionID
  • 94828708 (xsd:integer)
dbpedia-owl:wikiPageWikiLink
prop-fr:wikiPageUsesTemplate
dcterms:subject
rdfs:comment
  • En teoría de conjuntos, el axioma del conjunto potencia es un axioma que postula la existencia del conjunto potencia de cualquier conjunto; es decir, del conjunto de todos los subconjuntos de un conjunto dado.
  • In mathematics, the axiom of power set is one of the Zermelo–Fraenkel axioms of axiomatic set theory.In the formal language of the Zermelo–Fraenkel axioms, the axiom reads:where P stands for the power set of A, .
rdfs:label
  • Axiome de l'ensemble des parties
  • Aksjomat zbioru potęgowego
  • Assioma dell'insieme potenza
  • Axiom of power set
  • Axioma da potência
  • Axioma del conjunto potencia
  • Аксиома булеана
  • 멱집합 공리
owl:sameAs
http://www.w3.org/ns/prov#wasDerivedFrom
foaf:isPrimaryTopicOf
is dbpedia-owl:wikiPageRedirects of
is dbpedia-owl:wikiPageWikiLink of
is foaf:primaryTopic of