En mathématiques et plus précisément en théorie algébrique des nombres, l’arithmétique modulaire est un ensemble de méthodes permettant la résolution de problèmes sur les nombres entiers. Ces méthodes dérivent de l’étude du reste obtenu par une division euclidienne.L'idée de base de l'arithmétique modulaire est de travailler non sur les nombres eux-mêmes, mais sur les restes de leur division par quelque chose.

PropertyValue
dbpedia-owl:abstract
  • En mathématiques et plus précisément en théorie algébrique des nombres, l’arithmétique modulaire est un ensemble de méthodes permettant la résolution de problèmes sur les nombres entiers. Ces méthodes dérivent de l’étude du reste obtenu par une division euclidienne.L'idée de base de l'arithmétique modulaire est de travailler non sur les nombres eux-mêmes, mais sur les restes de leur division par quelque chose. Quand on fait par exemple une preuve par neuf à l'école primaire, on effectue un peu d'arithmétique modulaire sans le savoir : le diviseur est alors le nombre 9.Si ses origines remontent à l’Antiquité, les historiens associent généralement sa naissance à l’année 1801, date de la publication du livre Disquisitiones arithmeticae de Carl Friedrich Gauss. Sa nouvelle approche permet d’élucider de célèbres conjectures et simplifie les démonstrations d’importants résultats par une plus grande abstraction. Si le domaine naturel de ces méthodes est la théorie des nombres, les conséquences des idées de Gauss se retrouvent dans d’autres champs des mathématiques, comme l’algèbre ou la géométrie.Le XXe siècle modifie le statut de l’arithmétique modulaire. L'arithmétique de base des ordinateurs, celle qui travaille sur des mots mémoire de taille fixe, est nécessairement une arithmétique modulaire. Le développement de nombreuses applications industrielles impose la mise au point d’algorithmes pour l'arithmétique modulaire. Ils résolvent essentiellement des questions soulevées par le développement de l'informatique.L’article « Congruence sur les entiers » propose une introduction plus mathématique ; « Anneau ℤ/nℤ » traite le même sujet de manière moins didactique et plus exhaustive.
  • En matemática, la aritmética modular es un sistema aritmético para clases de equivalencia de números enteros llamadas clases de congruencia. La aritmética modular fue introducida en 1801 por Carl Friedrich Gauss en su libro Disquisitiones Arithmeticae.Algunas veces se le llama, sugerentemente, aritmética del reloj, ya que los números «dan la vuelta» tras alcanzar cierto valor llamado módulo.
  • Сравнение по модулю натурального числа n — в теории чисел отношение эквивалентности на кольце целых чисел, связанное с делимостью на n. Факторкольцо по этому отношению называется кольцом вычетов. Совокупность соответствующих тождеств и алгоритмов образует модульную (или модулярную) арифметику.
  • Em matemática, aritmética modular (chamada também de aritmética do relógio) é um sistema de aritmética para inteiros, onde os números "voltam pra trás" quando atingem um certo valor, o módulo.O matemático suiço Euler foi o pioneiro na abordagem de congruência por volta de 1750, quando ele explicitamente introduziu a ideia de congruência módulo um número natural N.A aritmética modular foi desenvolvida posteriormente por Carl Friedrich Gauss em seu livro Disquisitiones Arithmeticae, publicado em 1801.Um uso familiar da aritmética modular é no relógio de ponteiro, no qual o dia é divido em dois períodos de 12 horas cada. Se a hora é 7 horas agora, então daqui a 8 horas serão 3 horas. A adição usual sugere que o tempo futuro deveria ser 7 + 8 = 15, mas esta é a resposta errada por que o relógio "volta pra tràs" a cada 12 horas; não existe "15 horas" no relógio de ponteiro. Da mesma forma, se o relógio começa em 12:00(meio dia) e 21 horas passam, então a hora será 9:00 do dia seguinte, em vez de 33:00. Como o número de horas começa de novo depois que atinge 12, esta aritmética é chamada aritmética módulo 12. 12 é congruente não só a 12 mesmo, mas também a 0, assim a hora chamada "12:00" pode também ser chamada "0:00", pois 0 ≡ 12 mod 12.
  • A kongruencia a számelméletben az oszthatósági kérdéseket, a maradékokkal való számolást radikálisan leegyszerűsítő jelölésmód.A kongruencia egy reláció, amelyet az egész számok halmazán értelmezünk. Egy ilyen reláció kifejezi, hogy két szám adott számmal vett osztási maradéka egyenlő-e. Ezen relációkon és azok között végezhetünk műveleteket (összeadás, kivonás, szorzás, osztás, hatványozás – elvégzésükhöz különböző feltételeknek kell teljesülni, ezeket lásd lejjebb). Azonban ennél komolyabb dolgokra is használatos, amire példa a maradékosztályok vagy Chevalley-tétele.Ha két egész szám nem kongruens, akkor inkongruensnek nevezik őket.
  • En matemàtiques, i més concretament en teoria de nombres algebraics, l'aritmètica modular és un conjunt de mètodes que permeten la resolució de problemes sobre els nombres enters. Aquests mètodes sorgeixen de l'estudi del residu obtingut per una divisió.La idea de base de l'aritmètica modular és de treballar no sobre els nombres mateixos, sinó sobre els residus de la seva divisió per alguna cosa. Quan es fa, per exemple, la prova del nou, s'efectua una operació d'aritmètica modular sense saber-ho: el divisor és el valor 9. Tot i que els seus orígens es remunten a l'antiguitat, generalment, els historiadors associen el seu naixement a l'any 1801, data de la publicació del llibre Disquisitiones arithmeticae de Carl Friedrich Gauss (1777 - 1855). El seu nou enfocament permet elucidar cèlebres conjectures i simplifica les demostracions d'importants resultats gràcies a una major abstracció. Si bé l'àmbit natural d'aquests mètodes és la teoria dels nombres, les conseqüències de les idees de Gauss es troben també en altres camps de les matemàtiques, com l'àlgebra o la geometria. El segle XX modifica l'estatut de l'aritmètica modular. D'una banda, es necessiten altres mètodes per progressar en la teoria dels nombres. D'altra banda, el desenvolupament de nombroses aplicacions industrials imposa la posada a punt d'algorismes procedents de les tècniques modulars. Resolen essencialment qüestions sorgides en la teoria de la informació, una branca considerada actualment, sobretot, com matemàtiques aplicades.
  • Arytmetyka modularna, arytmetyka reszt – w matematyce system liczb całkowitych, w którym liczby „zawijają się” po osiągnięciu pewnej wartości nazywanej modułem, często określanej terminem modulo (skracane mod). Pierwszy pełny wykład arytmetyki reszt przedstawił Carl Friedrich Gauss w Disquisitiones Arithmeticae („Badania arytmetyczne”, 1801).Arytmetyka modularna pojawia się wszędzie tam, gdzie występuje powtarzalność i cykliczność; dotyczy ona samego mierzenia czasu i jako taka jest podstawą działania kalendarza (zob. dalej). Ponadto korzysta się z niej w teorii liczb, teorii grup, kryptografii, informatyce, przy tworzeniu sum kontrolnych, a nawet przy tworzeniu wzorów. Zasada działania szyfru RSA oraz Test Millera-Rabina opierają się na własnościach mnożenia w arytmetyce modularnej liczb całkowitych o module wyrażającym się dużą liczbą pierwszą.Wyraz modulo w żargonie jest używany jako „z dokładnością do”, na przykład: „Protokoły HTTP i HTTPS są identyczne modulo szyfrowanie” (tj. jedyną różnicą między http i https jest szyfrowanie).
  • L'aritmetica modulare (a volte detta aritmetica dell'orologio poiché su tale principio si basa il calcolo delle ore a cicli di 12 o 24) rappresenta un importante ramo della matematica. Essa trova applicazioni nella crittografia, nella teoria dei numeri (in particolare nella ricerca dei numeri primi), ed è alla base di molte delle più comuni operazioni aritmetiche e algebriche.Si tratta di un sistema di aritmetica degli interi, nel quale i numeri "si avvolgono su se stessi" ogni volta che raggiungono i multipli di un determinato numero n, detto modulo. L'aritmetica modulare e la notazione usuale delle congruenze vennero formalmente introdotte da Carl Friedrich Gauss nel suo trattato Disquisitiones Arithmeticae, pubblicato nel 1801.
  • In mathematics, modular arithmetic is a system of arithmetic for integers, where numbers "wrap around" upon reaching a certain value—the modulus. The modern approach to modular arithmetic was developed by Carl Friedrich Gauss in his book Disquisitiones Arithmeticae, published in 1801.A familiar use of modular arithmetic is in the 12-hour clock, in which the day is divided into two 12-hour periods. If the time is 7:00 now, then 8 hours later it will be 3:00. Usual addition would suggest that the later time should be 7 + 8 = 15, but this is not the answer because clock time "wraps around" every 12 hours; in 12-hour time, there is no "15 o'clock". Likewise, if the clock starts at 12:00 (noon) and 21 hours elapse, then the time will be 9:00 the next day, rather than 33:00. Since the hour number starts over after it reaches 12, this is arithmetic modulo 12. 12 is congruent not only to 12 itself, but also to 0, so the time called "12:00" could also be called "0:00", since 12 is congruent to 0 modulo 12.For a positive integer n, two integers a and b are said to be congruent modulo n, and written asif their difference a − b is an integer multiple of n (or n divides a − b). The number n is called the modulus of the congruence, while integers congruent to a modulo n are creating a set called congruence class, residue class or simply residue of the integer a, modulo n.
  • 数学、特に初等代数的整数論における合同算術(ごうどうさんじゅつ、英: modular arithmetic; モジュラ計算)は、(剰余を持つ除法の意味で)自然数あるいは整数をある特定の自然数で割ったときの剰余に注目して、自然数あるいは整数に関する問題を解決する一連の方法の総称である。合同算術の起源は、一般にはガウスが著作『Disquisitiones Arithmeticae』を出版する1801年にまで遡れるものとされる。ガウスによる合同式(ごうどうしき、英: congruence or congruence equation)を用いたこの新しい手法は、有名な平方剰余の相互法則を明らかにし、より抽象的な観点からウィルソンの定理などの定理の記述の簡素化に一役を買った。ガウスの研究は自然数を扱う整数論のみならず、代数学や幾何学といった数学のほかの主要な分野にまで影響を与えるものであった。この手法の基本は、「数それ自体」ではなくそれを別な数で割った(商がいくらになるかということは無視して)「剰余だけ」を考えるということにある。こういった考え方は何か特殊で高尚なものというようなものではなく、実際に日常生活においても時刻や角度といったものの計算や単位の換算などで、ちょっとした合同算術が特別な知識無くあるいは無意識に行われている。20世紀には、合同算術にまつわる状況は大きく様変わりをしている。計算機やウェブの普及に伴って情報セキュリティの観点からの暗号化アルゴリズムの開発や取り扱いといったような場面で古典的な合同算術に関する理論の工業的・商業的応用が頻繁に見られるようになった。
dbpedia-owl:thumbnail
dbpedia-owl:wikiPageExternalLink
dbpedia-owl:wikiPageID
  • 1866193 (xsd:integer)
dbpedia-owl:wikiPageLength
  • 81103 (xsd:integer)
dbpedia-owl:wikiPageOutDegree
  • 417 (xsd:integer)
dbpedia-owl:wikiPageRevisionID
  • 109621564 (xsd:integer)
dbpedia-owl:wikiPageWikiLink
prop-fr:année
  • 1801 (xsd:integer)
  • 2001 (xsd:integer)
prop-fr:date
  • 2007-10-20 (xsd:date)
prop-fr:isbn
  • 978 (xsd:integer)
prop-fr:lienAuteur
  • Carl Friedrich Gauss
prop-fr:nom
  • Singh
  • Gauss
prop-fr:oldid
  • 21967725 (xsd:integer)
prop-fr:prénom
  • Simon
  • Carl Friedrich
prop-fr:titre
prop-fr:titreOriginal
prop-fr:traducteur
  • A.-C.-M. Poullet-Delisle, éd. Courcier, 1807
prop-fr:wikiPageUsesTemplate
prop-fr:éditeur
  • Poche
dcterms:subject
rdfs:comment
  • En mathématiques et plus précisément en théorie algébrique des nombres, l’arithmétique modulaire est un ensemble de méthodes permettant la résolution de problèmes sur les nombres entiers. Ces méthodes dérivent de l’étude du reste obtenu par une division euclidienne.L'idée de base de l'arithmétique modulaire est de travailler non sur les nombres eux-mêmes, mais sur les restes de leur division par quelque chose.
  • En matemática, la aritmética modular es un sistema aritmético para clases de equivalencia de números enteros llamadas clases de congruencia. La aritmética modular fue introducida en 1801 por Carl Friedrich Gauss en su libro Disquisitiones Arithmeticae.Algunas veces se le llama, sugerentemente, aritmética del reloj, ya que los números «dan la vuelta» tras alcanzar cierto valor llamado módulo.
  • Сравнение по модулю натурального числа n — в теории чисел отношение эквивалентности на кольце целых чисел, связанное с делимостью на n. Факторкольцо по этому отношению называется кольцом вычетов. Совокупность соответствующих тождеств и алгоритмов образует модульную (или модулярную) арифметику.
  • 数学、特に初等代数的整数論における合同算術(ごうどうさんじゅつ、英: modular arithmetic; モジュラ計算)は、(剰余を持つ除法の意味で)自然数あるいは整数をある特定の自然数で割ったときの剰余に注目して、自然数あるいは整数に関する問題を解決する一連の方法の総称である。合同算術の起源は、一般にはガウスが著作『Disquisitiones Arithmeticae』を出版する1801年にまで遡れるものとされる。ガウスによる合同式(ごうどうしき、英: congruence or congruence equation)を用いたこの新しい手法は、有名な平方剰余の相互法則を明らかにし、より抽象的な観点からウィルソンの定理などの定理の記述の簡素化に一役を買った。ガウスの研究は自然数を扱う整数論のみならず、代数学や幾何学といった数学のほかの主要な分野にまで影響を与えるものであった。この手法の基本は、「数それ自体」ではなくそれを別な数で割った(商がいくらになるかということは無視して)「剰余だけ」を考えるということにある。こういった考え方は何か特殊で高尚なものというようなものではなく、実際に日常生活においても時刻や角度といったものの計算や単位の換算などで、ちょっとした合同算術が特別な知識無くあるいは無意識に行われている。20世紀には、合同算術にまつわる状況は大きく様変わりをしている。計算機やウェブの普及に伴って情報セキュリティの観点からの暗号化アルゴリズムの開発や取り扱いといったような場面で古典的な合同算術に関する理論の工業的・商業的応用が頻繁に見られるようになった。
  • A kongruencia a számelméletben az oszthatósági kérdéseket, a maradékokkal való számolást radikálisan leegyszerűsítő jelölésmód.A kongruencia egy reláció, amelyet az egész számok halmazán értelmezünk. Egy ilyen reláció kifejezi, hogy két szám adott számmal vett osztási maradéka egyenlő-e. Ezen relációkon és azok között végezhetünk műveleteket (összeadás, kivonás, szorzás, osztás, hatványozás – elvégzésükhöz különböző feltételeknek kell teljesülni, ezeket lásd lejjebb).
  • L'aritmetica modulare (a volte detta aritmetica dell'orologio poiché su tale principio si basa il calcolo delle ore a cicli di 12 o 24) rappresenta un importante ramo della matematica.
  • En matemàtiques, i més concretament en teoria de nombres algebraics, l'aritmètica modular és un conjunt de mètodes que permeten la resolució de problemes sobre els nombres enters. Aquests mètodes sorgeixen de l'estudi del residu obtingut per una divisió.La idea de base de l'aritmètica modular és de treballar no sobre els nombres mateixos, sinó sobre els residus de la seva divisió per alguna cosa.
  • In mathematics, modular arithmetic is a system of arithmetic for integers, where numbers "wrap around" upon reaching a certain value—the modulus. The modern approach to modular arithmetic was developed by Carl Friedrich Gauss in his book Disquisitiones Arithmeticae, published in 1801.A familiar use of modular arithmetic is in the 12-hour clock, in which the day is divided into two 12-hour periods. If the time is 7:00 now, then 8 hours later it will be 3:00.
  • Em matemática, aritmética modular (chamada também de aritmética do relógio) é um sistema de aritmética para inteiros, onde os números "voltam pra trás" quando atingem um certo valor, o módulo.O matemático suiço Euler foi o pioneiro na abordagem de congruência por volta de 1750, quando ele explicitamente introduziu a ideia de congruência módulo um número natural N.A aritmética modular foi desenvolvida posteriormente por Carl Friedrich Gauss em seu livro Disquisitiones Arithmeticae, publicado em 1801.Um uso familiar da aritmética modular é no relógio de ponteiro, no qual o dia é divido em dois períodos de 12 horas cada.
  • Arytmetyka modularna, arytmetyka reszt – w matematyce system liczb całkowitych, w którym liczby „zawijają się” po osiągnięciu pewnej wartości nazywanej modułem, często określanej terminem modulo (skracane mod).
rdfs:label
  • Arithmétique modulaire
  • Aritmetica modulare
  • Aritmètica modular
  • Aritmética modular
  • Aritmética modular
  • Arytmetyka modularna
  • Kongruencia
  • Kongruentzia (zenbaki-teoria)
  • Kongruenz (Zahlentheorie)
  • Modulair rekenen
  • Modular arithmetic
  • Modulární aritmetika
  • Сравнение по модулю
  • 合同式
  • 합동 (대수학)
owl:sameAs
http://www.w3.org/ns/prov#wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbpedia-owl:wikiPageDisambiguates of
is dbpedia-owl:wikiPageRedirects of
is dbpedia-owl:wikiPageWikiLink of
is foaf:primaryTopic of