En algèbre, on appelle anneaux certains ensembles munis d'une addition et d'une multiplication.Deux définitions différentes sont significativement représentées dans la littérature mathématique : la majorité des sources récentes définit un « anneau » comme un anneau unitaire, exigeant que la multiplication ait un élément neutre ; un nombre non négligeable d'ouvrages n'exige en revanche pas la présence d'une unité multiplicative.

PropertyValue
dbpedia-owl:abstract
  • En algèbre, on appelle anneaux certains ensembles munis d'une addition et d'une multiplication.Deux définitions différentes sont significativement représentées dans la littérature mathématique : la majorité des sources récentes définit un « anneau » comme un anneau unitaire, exigeant que la multiplication ait un élément neutre ; un nombre non négligeable d'ouvrages n'exige en revanche pas la présence d'une unité multiplicative. La structure qu'ils appellent alors « anneau » est ailleurs dénommée pseudo-anneau.Les théories des anneaux unitaires et des pseudo-anneaux sont à bien des égards voisines, avec nombre d'énoncés communs. Elles divergent pourtant significativement en quelques points (par exemple les propriétés des idéaux maximaux).On prendra enfin garde à ce que les textes qui ne traitent que d'algèbre commutative utilisent souvent « anneau » comme un raccourci pour dire « anneau commutatif ».
  • Pierścień – struktura formalizująca własności algebraiczne liczb całkowitych oraz arytmetyki modularnej; intuicyjnie zbiór, którego elementy mogą być bez przeszkód dodawane, odejmowane i mnożone, lecz niekoniecznie dzielone. Badanie pierścieni umożliwiło uogólnienie innych pojęć matematycznych takich, jak np. liczby pierwsze (przez ideały pierwsze), wielomiany, ułamki oraz rozwinięcie teorii podzielności i wskazania przy tym najogólniejszej struktury, w której możliwe jest stosowanie algorytmu Euklidesa (tzw. pierścień Euklidesa). Dział matematyki opisujący te struktury nazywa się teorią pierścieni.W literaturze spotyka się rozmaite definicje pierścieni różniące się stopniem uogólnienia. W artykule tym za najogólniejszą przyjmowana jest definicja tzw. pierścienia łącznego. Wnioskom płynącym z zawężenia definicji poprzez wymaganie elementu neutralnego mnożenia bądź warunku przemienności mnożenia również poświęcono osobne artykuły: pierścień z jedynką, pierścień przemienny.
  • 환(環, ring)은 덧셈과 곱셈이 정의된 대수적 구조의 하나이다. 환은 덧셈에 대하여 아벨 군을 이루고, 분배법칙과 곱셈의 결합법칙을 만족시키지만, 곱셈에 대한 역원은 존재하지 않을 수 있다.
  • Halka, matematiğin temel yapılarından biridir ve soyut cebirde tam sayıların soyutlamasıdır. Bu yapıyı işleyen dala halka kuramı denir. Halkalara örnek olarak polinomlar, modülo n ya da karmaşık sayılar verilebilir.Halka her şeyden önce bir kümedir ve belli özellikleri sağlar. Bu özellikler aşağıda verilmiştir.
  • En álgebra abstracta, un anillo es una estructura algebraica formada por un conjunto (A) y dos operaciones, llamadas usualmente suma y producto (A,+,*), de modo que (A,+) es un grupo conmutativo con elemento neutro (que designamos 0), y el producto * es asociativo y tiene la propiedad distributiva respecto de la suma. Si el producto es conmutativo hablaremos de un anillo conmutativo y si el anillo posee un elemento neutro para el producto, lo llamaremos anillo con unidad (a la que designaremos 1) o anillo unitario.
  • 数学における環(かん、英: ring)は、台集合に「加法」(和)および「乗法」(積)と呼ばれる二種類の二項演算を備えた代数系になっており、最もよく知られた環の例は、整数全体の成す集合に自然な加法と乗法を考えたものである(これは乗法が可換だから可換環の例でもある)。ただし、それが環と呼ばれるためには、環の公理として、加法は可換で、加法と乗法はともに結合的であって、乗法は加法の上に分配的で、各元は加法逆元をもち、加法単位元が存在すること、が全て要求される。従って、台集合は加法のもと「加法群」と呼ばれるアーベル群を成し、乗法のもと「乗法半群」と呼ばれる半群であって、乗法は加法に対して分配的であり、またしばしば乗法単位元を持つ。なお、よく用いられる環の定義としていくつか流儀の異なるものが存在するが、それについては後述する。環について研究する数学の分野は環論として知られる。環論学者が研究するのは(整数環や多項式環などの)よく知られた数学的構造やもっと他の環論の公理を満足する多くの未だよく知られていない数学的構造のいずれにも共通する性質についてである。環という構造のもつ遍在性は、数学の様々な分野において同時多発的に行われた「代数化」の動きの中心原理として働くことになった。また、環論は基本的な物理法則(の根底にある特殊相対性)や物質化学における対称現象の理解にも寄与する。環の概念は、1880年代のデデキントに始まる、フェルマーの最終定理に対する証明を試みの中で形成されていった。他分野(主に数論)からの寄与もあって、環の概念は一般化されていき、1920年代のうちにエミー・ネーター、ヴォルフガング・クルルらによって確立される。活発に研究が行われている数学の分野としての現代的な環論では、独特の方法論で環を研究している。すなわち、環を調べるために様々な概念を導入して、環をより小さなよく分かっている断片に分解する(イデアルをつかって剰余環を作り、単純環に帰着するなど)。こういった抽象的な性質に加えて、環論では可換環と非可換環を様々な点で分けて考える(前者は代数的数論や代数幾何学の範疇に属する)。特に豊かな理論が展開された特別な種類の可換環として、可換体があり、独自に体論と呼ばれる分野が形成されている。これに対応する非可換環の理論として、非可換可除環(斜体)が盛んに研究されている。なお、1980年代にアラン・コンヌによって非可換環と幾何学の間の奇妙な関連性が指摘されて以来、非可換幾何学が環論の分野として活発になってきている。
  • В алгебрата едно множество се нарича пръстен, ако в него са дефинирани две бинарни операции (за яснота събиране — '+'; умножение — '.') и множеството бива абелева група относно операцията събиране, както и са налице асоциативност, относно умножението и дистрибутивност. Неутралният елемент относно операцията събиране се нарича нулев или нула на пръстена (бележи се с 0). Ако има неутрален елемент относно операцията умножение, то той се нарича единичен елемент (или само единица, бележи се с 1) и пръстена се нарича пръстен с единица. Ако е налице комутативност на умножението, то пръстенът се нарича комутативен. Пръстен с единица, в който всеки ненулев елемент притежава обратен относно операцията умножение, се нарича тяло. Ако в едно тяло има още комутативност относно умножението, то достигаме до друга алгебрична структура, наречена поле.Един пръстен R притежава делители на нулата ако съществуват два различни от нула елемента на R, такива че тяхното произведение да е равно на нула. Ненулев пръстен, в който няма делители на нулата, се нарича област.Понятието пръстен е въведено от Давид Хилберт, като обобщение на по-ранния термин числов пръстен.
  • Gelanggang (ring) adalah salah satu struktur aljabar, yang memiliki 2 (dua) operasi biner, yang biasanya disebut operasi "penjumlahan" dan "perkalian". Ini berbeda dengan grup yang hanya memiliki satu operasi biner.
  • In mathematics, and more specifically in algebra, a ring is an algebraic structure with operations generalizing the arithmetic operations of addition and multiplication. By means of this generalization, theorems from arithmetic are extended to non-numerical objects like polynomials, series, matrices and functions.Rings were first formalized as a common generalization of Dedekind domains that occur in number theory, and of polynomial rings and rings of invariants that occur in algebraic geometry and invariant theory. They are also used in other branches of mathematics such as geometry and mathematical analysis. The formal definition of rings is relatively recent, dating from the 1920s.Briefly, a ring is an abelian group with a second binary operation that is distributive over the abelian group operation and is associative. The abelian group operation is called "addition" and the second binary operation is called "multiplication" in analogy with the integers. One familiar example of a ring is the set of integers. The integers are a commutative ring, since a times b is equal to b times a. The set of polynomials also forms a commutative ring. An example of a non-commutative ring is the ring of square matrices of the same size. Finally, a field is a commutative ring in which one can divide by any nonzero element: an example is the field of real numbers.Whether a ring is commutative or not has profound implication in the study of rings as abstract objects, the field called the ring theory. The development of the commutative theory, commonly known as commutative algebra, has been greatly influenced by problems and ideas occurring naturally in algebraic number theory and algebraic geometry: important commutative rings include fields, polynomial rings, the coordinate ring of an affine algebraic variety, and the ring of integers of a number field. On the other hand, the noncommutative theory takes examples from representation theory (group rings), functional analysis (operator algebras) and the theory of differential operators (rings of differential operators), and the topology (cohomology ring of a topological space.)
  • En matemàtiques, un anell és una estructura algebraica formada per un conjunt A d'elements on hi ha definides dues operacions binàries, que anomenarem suma (+) i producte (·) (tot i que no són necessàriament la suma i el producte de nombres reals habituals) i que compleixen les següents propietats: (A,+) és un grup commutatiu, és a dir: a+(b+c) = (a+b)+c per a tots els elements de A (associativitat). Existeix un element, 0, tal que 0+a = a+0 = a per a tot a de A (element neutre). Tot element a de A té un invers, −a, de manera que a+(−a) = (−a)+a = 0 (element invers). a+b = b+a per a tots els elements de A (commutativitat). (A,·) verifica que a·(b·c) = (a·b)·c per a tots els elements de A (associativitat). a·(b+c) = a·b+a·c i (b+c)·a = b·a+c·a per a tots els elements de A (propietat distributiva respecte a la suma).Alguns autors com Bourbaki, només consideren els anells unitaris, és a dir, aquells on l'operació producte admet un element neutre denotat 1 o explícitament 1A que compleix: 1⋅a = a⋅1 = a per a tot a ∈ A.Aquests autors acostumen a anomenar pseudo-anells als conjunts que no compleixen aquesta darrera condició.Fixem-nos que, en canvi, la commutativitat del producte (a·b = b·a) no és una condició dels anells. Els anells que sí que la compleixen s'anomenen anells commutatius.Fixem-nos també que l'element invers està definit per a la suma, però no per al producte. El conjunt d'elements invertibles d'un anell s'anomena el seu grup d'unitats, perquè té l'estructura de grup amb el producte. Quan l'element nul (zero) és l'únic element no invertible d'un anell, aquest s'anomena cos.
  • Em matemática, um anel é uma estrutura algébrica que consiste num conjunto, juntamente com duas operações binárias (normalmente chamado de adição e multiplicação), onde cada operação combina dois elementos para formar um terceiro elemento. Para se qualificar como um anel, o conjunto juntamente com as suas duas operações devem satisfazer determinadas condições - nomeadamente, o conjunto deve ser um grupo abeliano sob adição e um monoide sob multiplicação tal que a multiplicação distribui sobre a adição. Embora essas operações são familiares a partir de muitas estruturas matemáticas, tais como sistemas de números ou números inteiros, por exemplo, eles também são muito gerais, no sentido de que tomem uma ampla variedade de objetos matemáticos. A onipresença de anéis torna um princípio organizador central da matemática contemporânea. O ramo da matemática que estuda os anéis é conhecida como teoria dos anéis.
  • Okruh je v matematice algebraická struktura s dvěma binárními operacemi běžně nazývanými sčítání a násobení. Přitom sčítání splňuje axiomy Abelových grup a násobení axiomy monoidu. Typickým příkladem okruhu je množina celých čísel s běžně známými operacemi sčítání a násobení.
dbpedia-owl:wikiPageID
  • 5276690 (xsd:integer)
dbpedia-owl:wikiPageLength
  • 1454 (xsd:integer)
dbpedia-owl:wikiPageOutDegree
  • 12 (xsd:integer)
dbpedia-owl:wikiPageRevisionID
  • 104473740 (xsd:integer)
dbpedia-owl:wikiPageWikiLink
prop-fr:wikiPageUsesTemplate
dcterms:subject
rdf:type
rdfs:comment
  • En algèbre, on appelle anneaux certains ensembles munis d'une addition et d'une multiplication.Deux définitions différentes sont significativement représentées dans la littérature mathématique : la majorité des sources récentes définit un « anneau » comme un anneau unitaire, exigeant que la multiplication ait un élément neutre ; un nombre non négligeable d'ouvrages n'exige en revanche pas la présence d'une unité multiplicative.
  • 환(環, ring)은 덧셈과 곱셈이 정의된 대수적 구조의 하나이다. 환은 덧셈에 대하여 아벨 군을 이루고, 분배법칙과 곱셈의 결합법칙을 만족시키지만, 곱셈에 대한 역원은 존재하지 않을 수 있다.
  • Halka, matematiğin temel yapılarından biridir ve soyut cebirde tam sayıların soyutlamasıdır. Bu yapıyı işleyen dala halka kuramı denir. Halkalara örnek olarak polinomlar, modülo n ya da karmaşık sayılar verilebilir.Halka her şeyden önce bir kümedir ve belli özellikleri sağlar. Bu özellikler aşağıda verilmiştir.
  • 数学における環(かん、英: ring)は、台集合に「加法」(和)および「乗法」(積)と呼ばれる二種類の二項演算を備えた代数系になっており、最もよく知られた環の例は、整数全体の成す集合に自然な加法と乗法を考えたものである(これは乗法が可換だから可換環の例でもある)。ただし、それが環と呼ばれるためには、環の公理として、加法は可換で、加法と乗法はともに結合的であって、乗法は加法の上に分配的で、各元は加法逆元をもち、加法単位元が存在すること、が全て要求される。従って、台集合は加法のもと「加法群」と呼ばれるアーベル群を成し、乗法のもと「乗法半群」と呼ばれる半群であって、乗法は加法に対して分配的であり、またしばしば乗法単位元を持つ。なお、よく用いられる環の定義としていくつか流儀の異なるものが存在するが、それについては後述する。環について研究する数学の分野は環論として知られる。環論学者が研究するのは(整数環や多項式環などの)よく知られた数学的構造やもっと他の環論の公理を満足する多くの未だよく知られていない数学的構造のいずれにも共通する性質についてである。環という構造のもつ遍在性は、数学の様々な分野において同時多発的に行われた「代数化」の動きの中心原理として働くことになった。また、環論は基本的な物理法則(の根底にある特殊相対性)や物質化学における対称現象の理解にも寄与する。環の概念は、1880年代のデデキントに始まる、フェルマーの最終定理に対する証明を試みの中で形成されていった。他分野(主に数論)からの寄与もあって、環の概念は一般化されていき、1920年代のうちにエミー・ネーター、ヴォルフガング・クルルらによって確立される。活発に研究が行われている数学の分野としての現代的な環論では、独特の方法論で環を研究している。すなわち、環を調べるために様々な概念を導入して、環をより小さなよく分かっている断片に分解する(イデアルをつかって剰余環を作り、単純環に帰着するなど)。こういった抽象的な性質に加えて、環論では可換環と非可換環を様々な点で分けて考える(前者は代数的数論や代数幾何学の範疇に属する)。特に豊かな理論が展開された特別な種類の可換環として、可換体があり、独自に体論と呼ばれる分野が形成されている。これに対応する非可換環の理論として、非可換可除環(斜体)が盛んに研究されている。なお、1980年代にアラン・コンヌによって非可換環と幾何学の間の奇妙な関連性が指摘されて以来、非可換幾何学が環論の分野として活発になってきている。
  • Gelanggang (ring) adalah salah satu struktur aljabar, yang memiliki 2 (dua) operasi biner, yang biasanya disebut operasi "penjumlahan" dan "perkalian". Ini berbeda dengan grup yang hanya memiliki satu operasi biner.
  • Okruh je v matematice algebraická struktura s dvěma binárními operacemi běžně nazývanými sčítání a násobení. Přitom sčítání splňuje axiomy Abelových grup a násobení axiomy monoidu. Typickým příkladem okruhu je množina celých čísel s běžně známými operacemi sčítání a násobení.
  • Em matemática, um anel é uma estrutura algébrica que consiste num conjunto, juntamente com duas operações binárias (normalmente chamado de adição e multiplicação), onde cada operação combina dois elementos para formar um terceiro elemento.
  • In mathematics, and more specifically in algebra, a ring is an algebraic structure with operations generalizing the arithmetic operations of addition and multiplication.
  • En matemàtiques, un anell és una estructura algebraica formada per un conjunt A d'elements on hi ha definides dues operacions binàries, que anomenarem suma (+) i producte (·) (tot i que no són necessàriament la suma i el producte de nombres reals habituals) i que compleixen les següents propietats: (A,+) és un grup commutatiu, és a dir: a+(b+c) = (a+b)+c per a tots els elements de A (associativitat). Existeix un element, 0, tal que 0+a = a+0 = a per a tot a de A (element neutre).
  • Pierścień – struktura formalizująca własności algebraiczne liczb całkowitych oraz arytmetyki modularnej; intuicyjnie zbiór, którego elementy mogą być bez przeszkód dodawane, odejmowane i mnożone, lecz niekoniecznie dzielone. Badanie pierścieni umożliwiło uogólnienie innych pojęć matematycznych takich, jak np.
  • En álgebra abstracta, un anillo es una estructura algebraica formada por un conjunto (A) y dos operaciones, llamadas usualmente suma y producto (A,+,*), de modo que (A,+) es un grupo conmutativo con elemento neutro (que designamos 0), y el producto * es asociativo y tiene la propiedad distributiva respecto de la suma.
  • В алгебрата едно множество се нарича пръстен, ако в него са дефинирани две бинарни операции (за яснота събиране — '+'; умножение — '.') и множеството бива абелева група относно операцията събиране, както и са налице асоциативност, относно умножението и дистрибутивност. Неутралният елемент относно операцията събиране се нарича нулев или нула на пръстена (бележи се с 0).
rdfs:label
  • Anneau (mathématiques)
  • Anel (matemática)
  • Anell (matemàtiques)
  • Anello (algebra)
  • Anillo (matemática)
  • Gelanggang (matematika)
  • Gyűrű (matematika)
  • Halka (cebir)
  • Okruh (algebra)
  • Pierścień (matematyka)
  • Ring (Algebra)
  • Ring (mathematics)
  • Ring (wiskunde)
  • Кольцо (математика)
  • Пръстен (алгебра)
  • 環 (数学)
  • 환 (수학)
owl:sameAs
http://www.w3.org/ns/prov#wasDerivedFrom
foaf:isPrimaryTopicOf
is dbpedia-owl:wikiPageRedirects of
is dbpedia-owl:wikiPageWikiLink of
is skos:subject of
is foaf:primaryTopic of