About: Symbol of a differential operator     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : fr.dbpedia.org associated with source document(s)

AttributesValues
rdfs:label
  • Symbol of a differential operator (en)
  • Symbole d'un opérateur différentiel (fr)
rdfs:comment
  • En mathématiques, le symbole d'un opérateur différentiel est le polynôme obtenu à partir d'un opérateur différentiel linéaire en remplaçant, grosso modo, chaque dérivée partielle par une indéterminée. Le symbole d'un opérateur différentiel a d'importantes applications en analyse de Fourier puisqu'il représente l'effet de l'opérateur sur le spectre d'une fonction. Pris en sens inverse, ce lien conduit à une notion plus générale d'opérateur pseudo-différentiel. (fr)
rdfs:seeAlso
sameAs
Wikipage page ID
Wikipage revision ID
dbo:wikiPageWikiLink
page length (characters) of wiki page
dct:subject
prop-fr:wikiPageUsesTemplate
prov:wasDerivedFrom
prop-fr:année
prop-fr:collection
  • Grundl. Math. Wissenschaft. (fr)
prop-fr:doi
prop-fr:fr
  • multiplicateur de Fourier (fr)
prop-fr:isbn
prop-fr:langue
  • en (fr)
prop-fr:lienAuteur
  • Lars Hörmander (fr)
  • Raymond O. Wells, Jr. (fr)
prop-fr:nom
  • Wells (fr)
  • Hörmander (fr)
prop-fr:pagesTotales
prop-fr:prénom
  • L. (fr)
  • R.O. (fr)
prop-fr:titre
  • The analysis of linear partial differential operators I (fr)
  • Differential analysis on complex manifolds (fr)
prop-fr:trad
  • Multiplier (fr)
prop-fr:volume
prop-fr:éditeur
prop-fr:mathReviews
foaf:isPrimaryTopicOf
has abstract
  • En mathématiques, le symbole d'un opérateur différentiel est le polynôme obtenu à partir d'un opérateur différentiel linéaire en remplaçant, grosso modo, chaque dérivée partielle par une indéterminée. Le symbole d'un opérateur différentiel a d'importantes applications en analyse de Fourier puisqu'il représente l'effet de l'opérateur sur le spectre d'une fonction. Pris en sens inverse, ce lien conduit à une notion plus générale d'opérateur pseudo-différentiel. Le terme de plus haut degré du symbole, appelé symbole principal, contrôle presque complètement le comportement qualitatif des solutions de l'équation aux dérivées partielles linéaire correspondante à l'opérateur différentiel. Les équations aux dérivées partielles elliptiques peuvent être caractérisées comme celles dont le symbole principal correspondant ne s'annule jamais. Dans l'étude des équation aux dérivées partielles hyperboliques, les zéros du symbole principal correspondent aux caractéristiques de l'équation. La notion d'opérateur différentiel s'étend au cadre des variétés, mais les coefficients sont modifiés lors des changements de cartes. On arrive cependant à définir le symbole principal sous forme d'un tenseur symétrique, ce qui permet de retrouver les concepts d'opérateur pseudo-différentiels, d'opérateur elliptique... (fr)
is dbo:wikiPageWikiLink of
is oa:hasTarget of
is foaf:primaryTopic of
Faceted Search & Find service v1.16.111 as of Oct 19 2022


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3234 as of May 18 2022, on Linux (x86_64-ubuntu_bionic-linux-gnu), Single-Server Edition (39 GB total memory, 17 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software