About: dbpedia-fr:Surface_de_Zoll     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : fr.dbpedia.org associated with source document(s)

AttributesValues
rdfs:label
  • Surface de Zoll (fr)
  • 措爾曲面 (zh)
rdfs:comment
  • En mathématiques, plus particulièrement en géométrie différentielle, une surface de Zoll, portant le nom d'Otto Zoll, est une surface homéomorphe à la sphère de dimension 2, pourvue d'une métrique riemannienne dont toutes les géodésiques sont fermées et d'égale longueur. Bien que la métrique de la sphère unité habituelle sur ait évidemment cette propriété, il existe également une famille de dimension infinie de déformations géométriquement distinctes qui sont des surfaces de Zoll. En particulier, la plupart des surfaces de Zoll ne sont pas de courbure constante. (fr)
sameAs
Wikipage page ID
Wikipage revision ID
dbo:wikiPageWikiLink
Link from a Wikipage to an external page
page length (characters) of wiki page
dct:subject
prop-fr:wikiPageUsesTemplate
prov:wasDerivedFrom
foaf:depiction
  • http://commons.wikimedia.org/wiki/Special:FilePath/Surfacedezoll.png
prop-fr:art
  • Zoll_surface (fr)
prop-fr:auteur
  • Otto Zoll (fr)
prop-fr:date
  • Mar 1903 (fr)
prop-fr:doi
prop-fr:id
prop-fr:lang
  • en (fr)
prop-fr:langue
  • German (fr)
prop-fr:lireEnLigne
prop-fr:pages
prop-fr:périodique
  • Math. Ann. (fr)
prop-fr:titre
  • Über Flächen mit Scharen geschlossener geodätischer Linien (fr)
prop-fr:volume
thumbnail
foaf:isPrimaryTopicOf
has abstract
  • En mathématiques, plus particulièrement en géométrie différentielle, une surface de Zoll, portant le nom d'Otto Zoll, est une surface homéomorphe à la sphère de dimension 2, pourvue d'une métrique riemannienne dont toutes les géodésiques sont fermées et d'égale longueur. Bien que la métrique de la sphère unité habituelle sur ait évidemment cette propriété, il existe également une famille de dimension infinie de déformations géométriquement distinctes qui sont des surfaces de Zoll. En particulier, la plupart des surfaces de Zoll ne sont pas de courbure constante. Zoll, élève de David Hilbert, a découvert les premiers exemples non triviaux. Certaines surfaces de Zoll possèdent une symétrie de révolution ; elles ont été étudiées par Gaston Darboux en 1880 et totalement classifiées en 1978 par René Michel. En revanche selon un résultat de 1963 de Leon Green, aucune surface de Zoll, hormis la sphère standard, ne respecte la symétrie antipodale. L'analogue du problème de Zoll sur le plan projectif n'admet donc pas d'autre solution que la métrique canonique. (fr)
is dbo:wikiPageWikiLink of
is oa:hasTarget of
is foaf:primaryTopic of
Faceted Search & Find service v1.16.111 as of Oct 19 2022


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3234 as of May 18 2022, on Linux (x86_64-ubuntu_bionic-linux-gnu), Single-Server Edition (39 GB total memory, 17 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software