Attributes | Values |
---|
rdfs:label
| - Längster Pfad (de)
- Problème de la plus longue chaîne (fr)
- Задача о самом длинном пути (ru)
- 最长路径问题 (zh)
|
rdfs:comment
| - En théorie des graphes et en informatique théorique, le problème de la plus longue chaîne (ou le problème du plus long chemin dans le cas d'un graphe orienté) consiste à déterminer la plus longue chaîne élémentaire dans un graphe. Une chaîne est élémentaire si elle ne passe pas deux fois par le même sommet. La longueur d'une chaîne peut être mesurée par le nombre d'arêtes qui la composent ou, dans le cas de graphes pondérés, par la somme des poids des arêtes du chemin. (fr)
|
rdfs:seeAlso
| |
sameAs
| |
Wikipage page ID
| |
Wikipage revision ID
| |
dbo:wikiPageWikiLink
| |
Link from a Wikipage to an external page
| |
page length (characters) of wiki page
| |
dct:subject
| |
prop-fr:wikiPageUsesTemplate
| |
prov:wasDerivedFrom
| |
foaf:depiction
| |
prop-fr:fr
| - codage de couleurs (fr)
- dessin de graphes par niveau (fr)
|
prop-fr:lang
| |
prop-fr:texte
| |
prop-fr:trad
| - Color-coding (fr)
- Layered graph drawing (fr)
|
thumbnail
| |
foaf:isPrimaryTopicOf
| |
has abstract
| - En théorie des graphes et en informatique théorique, le problème de la plus longue chaîne (ou le problème du plus long chemin dans le cas d'un graphe orienté) consiste à déterminer la plus longue chaîne élémentaire dans un graphe. Une chaîne est élémentaire si elle ne passe pas deux fois par le même sommet. La longueur d'une chaîne peut être mesurée par le nombre d'arêtes qui la composent ou, dans le cas de graphes pondérés, par la somme des poids des arêtes du chemin. Contrairement au problème de plus court chemin, qui peut être résolu en temps polynomial dans les graphes sans cycle de poids négatif, le problème de la plus longue chaîne est NP-complet; il ne peut donc être résolu en temps polynomial, sauf si P=NP. Des résultats complémentaires montrent que, de plus, ce problème est également difficile à résoudre de manière approchée. En revanche, il a une complexité linéaire pour les graphes orientés acycliques, et il a alors des applications importantes, par exemple dans la détermination du chemin critique dans des problèmes d'ordonnancement, comme ils sont modélisés dans la méthode PERT par exemple. (fr)
|
is dbo:wikiPageWikiLink
of | |
is Wikipage redirect
of | |
is oa:hasTarget
of | |
is foaf:primaryTopic
of | |