About: Runge's phenomenon     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : fr.dbpedia.org associated with source document(s)

AttributesValues
rdfs:label
  • Polynominterpolation (de)
  • Efekt Rungego (pl)
  • Fenomen de Runge (ca)
  • Fenomeno di Runge (it)
  • Fenómeno de Runge (pt)
  • Phénomène de Runge (fr)
  • Runge's phenomenon (en)
rdfs:comment
  • Dans le domaine mathématique de l'analyse numérique, le phénomène de Runge se manifeste dans le contexte de l'interpolation polynomiale, en particulier l'interpolation de Lagrange. Avec certaines fonctions (même analytiques), l'augmentation du nombre n de points d'interpolation ne constitue pas nécessairement une bonne stratégie d'approximation. En étudiant cette question, le mathématicien allemand Carl Runge découvrit, en 1901, un résultat contraire à l'intuition : il existe des configurations où l'écart maximal entre la fonction et son interpolation augmente indéfiniment avec n. (fr)
rdfs:seeAlso
sameAs
Link from a Wikipa... related subject.
Wikipage page ID
Wikipage revision ID
dbo:wikiPageWikiLink
page length (characters) of wiki page
dct:subject
prop-fr:wikiPageUsesTemplate
prov:wasDerivedFrom
foaf:depiction
  • http://commons.wikimedia.org/wiki/Special:FilePath/Rungesphenomenon.png
thumbnail
foaf:isPrimaryTopicOf
named after
has abstract
  • Dans le domaine mathématique de l'analyse numérique, le phénomène de Runge se manifeste dans le contexte de l'interpolation polynomiale, en particulier l'interpolation de Lagrange. Avec certaines fonctions (même analytiques), l'augmentation du nombre n de points d'interpolation ne constitue pas nécessairement une bonne stratégie d'approximation. En étudiant cette question, le mathématicien allemand Carl Runge découvrit, en 1901, un résultat contraire à l'intuition : il existe des configurations où l'écart maximal entre la fonction et son interpolation augmente indéfiniment avec n. (fr)
is dbo:wikiPageWikiLink of
is Wikipage redirect of
is oa:hasTarget of
is foaf:primaryTopic of
Faceted Search & Find service v1.16.111 as of Oct 19 2022


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3234 as of May 18 2022, on Linux (x86_64-ubuntu_bionic-linux-gnu), Single-Server Edition (39 GB total memory, 6 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software