About: dbpedia-fr:Méthode_des_volumes_finis     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : fr.dbpedia.org associated with source document(s)

AttributesValues
rdfs:label
  • Méthode des volumes finis (fr)
  • Método dos volumes finitos (pt)
  • Метод скінченних об'ємів (uk)
  • 有限體積法 (zh)
rdfs:comment
  • En analyse numérique, la méthode des volumes finis est utilisée pour résoudre numériquement des équations aux dérivées partielles, comme la méthode des différences finies et celle des éléments finis. Contrairement à la méthode des différences finies qui met en jeu des approximations des dérivées, les méthodes des volumes finis et des éléments finis exploitent des approximations d'intégrales. Toutefois, la méthode des volumes finis se base directement sur la forme dite forte de l'équation à résoudre, alors que la méthode des éléments finis se fonde sur une formulation variationnelle de l'équation (on parle aussi de formulation faible). (fr)
rdfs:seeAlso
sameAs
Wikipage page ID
Wikipage revision ID
dbo:wikiPageWikiLink
Link from a Wikipage to an external page
page length (characters) of wiki page
dct:subject
prop-fr:wikiPageUsesTemplate
prov:wasDerivedFrom
foaf:depiction
  • http://commons.wikimedia.org/wiki/Special:FilePath/Finite_element_triangulation.svg
  • http://commons.wikimedia.org/wiki/Special:FilePath/Maillage_1D_volumes_finis.png
  • http://commons.wikimedia.org/wiki/Special:FilePath/Normale_sortante_à_une_arête_d'un_volume_de_controle.png
thumbnail
foaf:isPrimaryTopicOf
has abstract
  • En analyse numérique, la méthode des volumes finis est utilisée pour résoudre numériquement des équations aux dérivées partielles, comme la méthode des différences finies et celle des éléments finis. Contrairement à la méthode des différences finies qui met en jeu des approximations des dérivées, les méthodes des volumes finis et des éléments finis exploitent des approximations d'intégrales. Toutefois, la méthode des volumes finis se base directement sur la forme dite forte de l'équation à résoudre, alors que la méthode des éléments finis se fonde sur une formulation variationnelle de l'équation (on parle aussi de formulation faible). L'équation aux dérivées partielles est résolue de manière approchée à l’aide d’un maillage constitué de volumes finis qui sont des petits volumes disjoints en 3D (des surfaces en 2D, des segments en 1D) dont la réunion constitue le domaine d'étude. Les volumes finis peuvent être construits autour de points d'un maillage initial, mais ce n’est pas une nécessité. Les méthodes de volumes finis ont été initialement mises au point pour des lois de conservation hyperboliques, mais des développements récents permettent à présent de les utiliser pour des équations elliptiques et paraboliques. Ces équations aux dérivées partielles contiennent des termes de divergence. En utilisant le théorème de flux-divergence, les intégrales de volume d'un terme de divergence sont transformées en intégrales de surface et ces termes de flux sont ensuite évalués aux interfaces entre les volumes finis. On utilise une fonction de flux numérique pour élaborer une approximation des flux aux interfaces. Puisque le flux entrant dans un volume donné est égal au flux sortant du volume adjacent, ces méthodes sont conservatives, donc parfaitement adaptées à la résolution de lois de conservation. Un autre avantage de la méthode des volumes finis est qu'elle est facilement utilisable avec des maillages non structurés car, en matière de discrétisation des lois de conservation, sa formulation ne tient aucun compte de la complexité du maillage. En revanche, les caractéristiques géométriques du maillage peuvent jouer un rôle prépondérant lorsque des flux diffusifs entrent en jeu. (fr)
is dbo:wikiPageWikiLink of
Faceted Search & Find service v1.16.111 as of Oct 19 2022


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3234 as of May 18 2022, on Linux (x86_64-ubuntu_bionic-linux-gnu), Single-Server Edition (39 GB total memory, 9 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software