Attributes | Values |
---|
rdf:type
| |
rdfs:label
| - Algorithme de Jaumain (fr)
|
rdfs:comment
| - L'algorithme de Jaumain (ou algorithme des échéances moyennes) a pour but de calculer le taux de rentabilité interne (TRI), c’est-à-dire le taux d'actualisation qui annule la valeur actuelle nette (VAN) d'une série de flux financiers. Dans le cas particulier où les échéances sont équidistantes, le problème n’est pas susceptible d’une solution algébrique dès que le nombre de ces échéances est supérieur à 5, c’est-à-dire dès que le degré de l’équation est supérieur à 4. C’est donc à des méthodes d’itération qu’il convient de faire appel, comme la méthode de Newton-Raphson. La méthode présentée ici, conçue en 1979 par Christian Jaumain, est a priori spécifique aux opérations financières ; elle s’applique à toute série de flux, quels qu’en soient les montants, le nombre et l’époque des échéanc (fr)
|
sameAs
| |
Wikipage page ID
| |
Wikipage revision ID
| |
dbo:wikiPageWikiLink
| |
page length (characters) of wiki page
| |
dct:subject
| |
prop-fr:wikiPageUsesTemplate
| |
prov:wasDerivedFrom
| |
foaf:depiction
| |
thumbnail
| |
foaf:isPrimaryTopicOf
| |
has abstract
| - L'algorithme de Jaumain (ou algorithme des échéances moyennes) a pour but de calculer le taux de rentabilité interne (TRI), c’est-à-dire le taux d'actualisation qui annule la valeur actuelle nette (VAN) d'une série de flux financiers. Dans le cas particulier où les échéances sont équidistantes, le problème n’est pas susceptible d’une solution algébrique dès que le nombre de ces échéances est supérieur à 5, c’est-à-dire dès que le degré de l’équation est supérieur à 4. C’est donc à des méthodes d’itération qu’il convient de faire appel, comme la méthode de Newton-Raphson. La méthode présentée ici, conçue en 1979 par Christian Jaumain, est a priori spécifique aux opérations financières ; elle s’applique à toute série de flux, quels qu’en soient les montants, le nombre et l’époque des échéances. (fr)
|
is dbo:wikiPageWikiLink
of | |
is oa:hasTarget
of | |
is foaf:primaryTopic
of | |