. . "En physique nucl\u00E9aire, le mod\u00E8le en couches est un mod\u00E8le du noyau atomique fond\u00E9 sur le principe d'exclusion de Pauli pour d\u00E9crire la structure nucl\u00E9aire sous l'angle des niveaux d'\u00E9nergie.Ce mod\u00E8le a \u00E9t\u00E9 d\u00E9velopp\u00E9 en 1949 suite aux travaux ind\u00E9pendants de plusieurs physiciens, notamment Eugene Paul Wigner, Maria Goeppert Mayer et J. Hans D. Jensen. Dans ce mod\u00E8le, les couches nucl\u00E9aires sont constitu\u00E9es de sous-couches redistribu\u00E9es par couplage spin-orbite en niveaux d'\u00E9nergie susceptibles d'expliquer l'origine des nombres magiques observ\u00E9s exp\u00E9rimentalement comme correspondant au nombre de nucl\u00E9ons saturant ces niveaux d'\u00E9nergie, ce qui conf\u00E9rerait aux nucl\u00E9ides correspondants une stabilit\u00E9 accrue par rapport \u00E0 la formule de Weizs\u00E4cker d\u00E9duite du mod\u00E8le de la goutte liquide :"@fr . . "\u0422\u0435\u043E\u0301\u0440\u0438\u044F \u043E\u0431\u043E\u043B\u043E\u0301\u0447\u0435\u0447\u043D\u043E\u0433\u043E \u0441\u0442\u0440\u043E\u0435\u0301\u043D\u0438\u044F \u044F\u0434\u0440\u0430\u0301 \u2014 \u043E\u0434\u043D\u0430 \u0438\u0437 \u044F\u0434\u0435\u0440\u043D\u043E-\u0444\u0438\u0437\u0438\u0447\u0435\u0441\u043A\u0438\u0445 \u043C\u043E\u0434\u0435\u043B\u0435\u0439, \u043E\u0431\u044A\u044F\u0441\u043D\u044F\u044E\u0449\u0430\u044F \u0441\u0442\u0440\u0443\u043A\u0442\u0443\u0440\u0443 \u0430\u0442\u043E\u043C\u043D\u043E\u0433\u043E \u044F\u0434\u0440\u0430. \u041E\u043D\u0430 \u0430\u043D\u0430\u043B\u043E\u0433\u0438\u0447\u043D\u0430 \u0442\u0435\u043E\u0440\u0438\u0438 \u043E\u0431\u043E\u043B\u043E\u0447\u0435\u0447\u043D\u043E\u0433\u043E \u0441\u0442\u0440\u043E\u0435\u043D\u0438\u044F \u0430\u0442\u043E\u043C\u0430. \u0412 \u043E\u0431\u043E\u043B\u043E\u0447\u0435\u0447\u043D\u043E\u0439 \u043C\u043E\u0434\u0435\u043B\u0438 \u0430\u0442\u043E\u043C\u0430 \u044D\u043B\u0435\u043A\u0442\u0440\u043E\u043D\u044B \u043D\u0430\u043F\u043E\u043B\u043D\u044F\u044E\u0442 \u044D\u043B\u0435\u043A\u0442\u0440\u043E\u043D\u043D\u044B\u0435 \u043E\u0431\u043E\u043B\u043E\u0447\u043A\u0438, \u0438, \u043A\u0430\u043A \u0442\u043E\u043B\u044C\u043A\u043E \u043E\u0431\u043E\u043B\u043E\u0447\u043A\u0430 \u0437\u0430\u043F\u043E\u043B\u043D\u0435\u043D\u0430, \u0437\u043D\u0430\u0447\u0438\u0442\u0435\u043B\u044C\u043D\u043E \u043F\u043E\u043D\u0438\u0436\u0430\u0435\u0442\u0441\u044F \u044D\u043D\u0435\u0440\u0433\u0438\u044F \u0441\u0432\u044F\u0437\u0438 \u0434\u043B\u044F \u0441\u043B\u0435\u0434\u0443\u044E\u0449\u0435\u0433\u043E \u044D\u043B\u0435\u043A\u0442\u0440\u043E\u043D\u0430."@ru . "Modello nucleare a shell"@it . . . . "Mod\u00E8le en couches"@fr . "H\u00E9jmodell" . "En f\u00EDsica, el modelo de capas nuclear es una teor\u00EDa creada para describir la estructura interna del n\u00FAcleo y una din\u00E1mica para los nucleones. Es muy parecido al planteado para el caso de la corteza electr\u00F3nica \u2014el modelo de capas electr\u00F3nico\u2014 .En el caso de los electrones, ten\u00EDamos part\u00EDculas id\u00E9nticas que se agrupaban en capas de n\u00FAmeros cu\u00E1nticos espaciales distintos (n,l). El n\u00FAmero de electrones permitidos en cada capa ven\u00EDa impuesto por el principio de exclusi\u00F3n de Pauli para fermiones. Los n\u00FAmero cu\u00E1nticos asociados vienen como resoluci\u00F3n de la ecuaci\u00F3n de Schr\u00F6dinger para un potencial coulombiano (~ 1/r) y centr\u00EDfugo.En el caso nuclear, tendremos fermiones (los nucleones) en un potencial nuclear. Estos nucleones tendr\u00E1n un n\u00FAmero cu\u00E1ntico adicional, el isosp\u00EDn, cuya proyecci\u00F3n nos dir\u00E1 si el nucle\u00F3n se trata de un prot\u00F3n o un neutr\u00F3n.Al a\u00F1adir nucleones a un n\u00FAcleo, existen ciertas configuraciones en las que la energ\u00EDa de enlace nuclear del siguiente nucle\u00F3n es significativamente menor que la anterior. Mediante observaci\u00F3n, se conocen ciertos n\u00FAmeros m\u00E1gicos de nucleones que est\u00E1n m\u00E1s estrechamente vinculados que el n\u00FAmero de orden superior. Los siete n\u00FAmeros m\u00E1s reconocidos desde 2007 son:2, 8, 20, 28, 50, 82, 126 (sucesi\u00F3n A018226 en OEIS)Este es el origen del modelo de capas.La diferencia clave con el caso de los electrones, es que no basta con un modelo de part\u00EDculas independientes y la elecci\u00F3n del potencial de interacci\u00F3n es clave para la resoluci\u00F3n del espectro de energ\u00EDas. El potencial m\u00E1s usual, es el potencial de Wood-Saxon, pero la resoluci\u00F3n de la ecuaci\u00F3n de Shr\u00F6edinger se hace no anal\u00EDtica.El primer modelo de capas fue propuesto por Dmitry Ivanenko (junto con E. Gapon) en 1932. El modelo fue desarrollado en 1949 a partir de los trabajos desarrollados independientemente por parte de varios f\u00EDsicos; en particular Eugene Paul Wigner, Maria Goeppert-Mayer y J. Hans D. Jensen, quien comparti\u00F3 en 1963 el Premio Nobel de F\u00EDsica por sus contribuciones." . "In nuclear physics and nuclear chemistry, the nuclear shell model is a model of the atomic nucleus which uses the Pauli exclusion principle to describe the structure of the nucleus in terms of energy levels. The first shell model was proposed by Dmitry Ivanenko (together with E. Gapon) in 1932. The model was developed in 1949 following independent work by several physicists, most notably Eugene Paul Wigner, Maria Goeppert-Mayer and J. Hans D. Jensen, who shared the 1963 Nobel Prize in Physics for their contributions.The shell model is partly analogous to the atomic shell model which describes the arrangement of electrons in an atom, in that a filled shell results in greater stability. When adding nucleons (protons or neutrons) to a nucleus, there are certain points where the binding energy of the next nucleon is significantly less than the last one. This observation, that there are certain magic numbers of nucleons: 2, 8, 20, 28, 50, 82, 126 which are more tightly bound than the next higher number, is the origin of the shell model.The shells for protons and for neutrons are independent of each other. Therefore, one can have \"magic nuclei\" where one nucleon type or the other is at a magic number, and \"doubly magic nuclei\", where both are. Due to some variations in orbital filling, the upper magic numbers are 126 and, speculatively, 184 for neutrons but only 114 for protons, playing a role in the search for the so-called island of stability. Some semimagic numbers have been found, notably Z=40 giving nuclear shell filling for the various elements; 16 may also be a magic number.In order to get these numbers, the nuclear shell model starts from an average potential with a shape something between the square well and the harmonic oscillator. To this potential a spin orbit term is added. Even so, the total perturbation does not coincide with experiment, and an empirical spin orbit coupling, named the Nilsson Term, must be added with at least two or three different values of its coupling constant, depending on the nuclei being studied.Nevertheless, the magic numbers of nucleons, as well as other properties, can be arrived at by approximating the model with a three-dimensional harmonic oscillator plus a spin-orbit interaction. A more realistic but also complicated potential is known as Woods Saxon potential.Igal Talmi developed a method to obtain the information from experimental data and use it to calculate and predict energies which have not been measured. This method has been successfully used by many nuclear physicists and has led to deeper understanding of nuclear structure. The theory which gives a good description of these properties was developed. This description turned out to furnish the shell model basis of the elegant and successful Interacting boson model."@en . . "Model pow\u0142okowy \u2013 jeden z modeli budowy j\u0105dra atomowego w fizyce j\u0105drowej. Model utworzony na wz\u00F3r modelu pow\u0142okowego uk\u0142adu elektron\u00F3w w atomie. Model ten rozpatruje nukleony j\u0105dra jako niezale\u017Cnie poruszaj\u0105ce si\u0119 cz\u0105stki w polu j\u0105dra utworzonym przez pozosta\u0142e nukleony: protony i neutrony. Pole wytworzone przez nukleony j\u0105dra nazywane jest potencja\u0142em j\u0105drowym i jest interpretowane jako u\u015Brednienie oddzia\u0142ywa\u0144 mi\u0119dzynukleonowych.Wnioskiem z modelu jest stwierdzenie, \u017Ce j\u0105dra atomowe, posiadaj\u0105ce wype\u0142nione pow\u0142oki, powinny mie\u0107 wi\u0119ksz\u0105 energi\u0119 wi\u0105zania od innych, czyli s\u0105 stabilniejsze ni\u017C j\u0105dra s\u0105siednie. Liczby proton\u00F3w, neutron\u00F3w dla kt\u00F3rych wype\u0142nione s\u0105 pow\u0142oki nazwano liczbami magicznymi. Liczby magiczne dla proton\u00F3w i neutron\u00F3w to: 2, 8, 20, 28, 50, 82, 126, a dla samych neutron\u00F3w tak\u017Ce 184. Dla proton\u00F3w magiczna mo\u017Ce by\u0107 liczba 126 lub 120, lub nawet 114. J\u0105dra o \"magicznej\" liczbie proton\u00F3w lub neutron\u00F3w nazywa si\u0119 j\u0105drami magicznymi, a podw\u00F3jnie magicznymi, je\u015Bli zar\u00F3wno liczba proton\u00F3w jak i neutron\u00F3w jest magiczna.Z modelu wynika te\u017C, \u017Ce j\u0105dra atomowe o liczbie proton\u00F3w oko\u0142o 126 powinny mie\u0107 znacznie d\u0142u\u017Cszy czas \u017Cycia ni\u017C j\u0105dra s\u0105siednie. Obszar ten nazwano wysp\u0105 stabilno\u015Bci.J\u0105dra magiczne s\u0105 j\u0105drowym odpowiednikiem atom\u00F3w tworz\u0105cych gazy szlachetne. Niekt\u00F3re j\u0105dra podw\u00F3jnie magiczne to: hel \u2013 4, tlen \u2013 16, cyna \u2013 132, o\u0142\u00F3w \u2013 208."@pl . . . . "A h\u00E9jmodell egyike a legkor\u00E1bbi atommag-modelleknek. A nukleonok \u2013 ugyan\u00FAgy, mint az elektronok \u2013 fermionok, ez\u00E9rt \u00E9rv\u00E9nyes r\u00E1juk a Pauli-f\u00E9le kiz\u00E1r\u00E1si elv. A modell szerint a nukleonok is \u2013 az atom elektronjaihoz hasonl\u00F3an \u2013 energiaszintekre csoportosulnak. Annak ellen\u00E9re, hogy az atommagban a nukleonok s\u0171r\u0171n \u00FCtk\u00F6znek (teh\u00E1t a klasszikus \u00E9rtelemben vett \"szint\" nem l\u00E9tezik), ez a modell sikeresen magyar\u00E1zza az atommagok stabilit\u00E1s\u00E1nak periodikuss\u00E1g\u00E1t.A modellen els\u0151sorban Wigner Jen\u0151, Maria Goeppert Mayer \u00E9s J. Hans D. Jensen dolgoztak, akik munk\u00E1juk elismer\u00E9sek\u00E9ppen 1963-ban elnyert\u00E9k a fizikai Nobel-d\u00EDjat." . . . . . . "A h\u00E9jmodell egyike a legkor\u00E1bbi atommag-modelleknek. A nukleonok \u2013 ugyan\u00FAgy, mint az elektronok \u2013 fermionok, ez\u00E9rt \u00E9rv\u00E9nyes r\u00E1juk a Pauli-f\u00E9le kiz\u00E1r\u00E1si elv. A modell szerint a nukleonok is \u2013 az atom elektronjaihoz hasonl\u00F3an \u2013 energiaszintekre csoportosulnak." . . "Modelo de capas nuclear" . . . . "1118660"^^ . . "\u0422\u0435\u043E\u0440\u0438\u044F \u043E\u0431\u043E\u043B\u043E\u0447\u0435\u0447\u043D\u043E\u0433\u043E \u0441\u0442\u0440\u043E\u0435\u043D\u0438\u044F \u044F\u0434\u0440\u0430"@ru . "\u0422\u0435\u043E\u0301\u0440\u0438\u044F \u043E\u0431\u043E\u043B\u043E\u0301\u0447\u0435\u0447\u043D\u043E\u0433\u043E \u0441\u0442\u0440\u043E\u0435\u0301\u043D\u0438\u044F \u044F\u0434\u0440\u0430\u0301 \u2014 \u043E\u0434\u043D\u0430 \u0438\u0437 \u044F\u0434\u0435\u0440\u043D\u043E-\u0444\u0438\u0437\u0438\u0447\u0435\u0441\u043A\u0438\u0445 \u043C\u043E\u0434\u0435\u043B\u0435\u0439, \u043E\u0431\u044A\u044F\u0441\u043D\u044F\u044E\u0449\u0430\u044F \u0441\u0442\u0440\u0443\u043A\u0442\u0443\u0440\u0443 \u0430\u0442\u043E\u043C\u043D\u043E\u0433\u043E \u044F\u0434\u0440\u0430. \u041E\u043D\u0430 \u0430\u043D\u0430\u043B\u043E\u0433\u0438\u0447\u043D\u0430 \u0442\u0435\u043E\u0440\u0438\u0438 \u043E\u0431\u043E\u043B\u043E\u0447\u0435\u0447\u043D\u043E\u0433\u043E \u0441\u0442\u0440\u043E\u0435\u043D\u0438\u044F \u0430\u0442\u043E\u043C\u0430. \u0412 \u043E\u0431\u043E\u043B\u043E\u0447\u0435\u0447\u043D\u043E\u0439 \u043C\u043E\u0434\u0435\u043B\u0438 \u0430\u0442\u043E\u043C\u0430 \u044D\u043B\u0435\u043A\u0442\u0440\u043E\u043D\u044B \u043D\u0430\u043F\u043E\u043B\u043D\u044F\u044E\u0442 \u044D\u043B\u0435\u043A\u0442\u0440\u043E\u043D\u043D\u044B\u0435 \u043E\u0431\u043E\u043B\u043E\u0447\u043A\u0438, \u0438, \u043A\u0430\u043A \u0442\u043E\u043B\u044C\u043A\u043E \u043E\u0431\u043E\u043B\u043E\u0447\u043A\u0430 \u0437\u0430\u043F\u043E\u043B\u043D\u0435\u043D\u0430, \u0437\u043D\u0430\u0447\u0438\u0442\u0435\u043B\u044C\u043D\u043E \u043F\u043E\u043D\u0438\u0436\u0430\u0435\u0442\u0441\u044F \u044D\u043D\u0435\u0440\u0433\u0438\u044F \u0441\u0432\u044F\u0437\u0438 \u0434\u043B\u044F \u0441\u043B\u0435\u0434\u0443\u044E\u0449\u0435\u0433\u043E \u044D\u043B\u0435\u043A\u0442\u0440\u043E\u043D\u0430."@ru . . . . "Nuclear shell model"@en . . . "In nuclear physics and nuclear chemistry, the nuclear shell model is a model of the atomic nucleus which uses the Pauli exclusion principle to describe the structure of the nucleus in terms of energy levels. The first shell model was proposed by Dmitry Ivanenko (together with E. Gapon) in 1932. The model was developed in 1949 following independent work by several physicists, most notably Eugene Paul Wigner, Maria Goeppert-Mayer and J. Hans D."@en . "In fisica nucleare e chimica nucleare, il modello nucleare a shell \u00E8 un modello del nucleo atomico che usa il principio di esclusione di Pauli per descrivere la struttura del nucleo in termini dei livelli energetici. Il primo modello a shell fu proposto da Dmitry Ivanenko (insieme a E. Gapon) e quindi sviluppato nel 1949 a seguito del lavoro indipendente di altri fisici, tra i quali in particolare Eugene Wigner, Maria Goeppert-Mayer e J. Hans D."@it . "1176"^^ . "Model pow\u0142okowy"@pl . "En physique nucl\u00E9aire, le mod\u00E8le en couches est un mod\u00E8le du noyau atomique fond\u00E9 sur le principe d'exclusion de Pauli pour d\u00E9crire la structure nucl\u00E9aire sous l'angle des niveaux d'\u00E9nergie.Ce mod\u00E8le a \u00E9t\u00E9 d\u00E9velopp\u00E9 en 1949 suite aux travaux ind\u00E9pendants de plusieurs physiciens, notamment Eugene Paul Wigner, Maria Goeppert Mayer et J. Hans D. Jensen."@fr . "Schalenmodell (Kernphysik)"@de . "In fisica nucleare e chimica nucleare, il modello nucleare a shell \u00E8 un modello del nucleo atomico che usa il principio di esclusione di Pauli per descrivere la struttura del nucleo in termini dei livelli energetici. Il primo modello a shell fu proposto da Dmitry Ivanenko (insieme a E. Gapon) e quindi sviluppato nel 1949 a seguito del lavoro indipendente di altri fisici, tra i quali in particolare Eugene Wigner, Maria Goeppert-Mayer e J. Hans D. Jensen ai quali venne congiuntamente assegnato il premio Nobel per la fisica nel 1963 per il loro lavoro in questo campo.Il modello a shell del nucleo \u00E8 parzialmente analogo al modello atomico a shell che descrive la disposizione degli elettroni in un atomo, in particolare la configurazione di \"shell piena\" ha particolare stabilit\u00E0. In modo analogo quando un nucleone (un protone o un neutrone) viene aggiunto al nucleo si osserva che ci sono delle situazioni in cui l'energia di legame di un nucleo successivo \u00E8 significativamente pi\u00F9 bassa della precedente. Questa osservazione \u00E8 stata caratterizzata con l'espressione \"numeri magici\", ovvero le configurazioni contenenti 2, 8, 20, 28, 50, 82 o 126 nucleoni risultavano particolarmente pi\u00F9 stabili di quelle contenenti un nucleone in pi\u00F9. Il modello a shell del nucleo si basa su questo fatto sperimentale.Si noti che le shell esistono sia per i protoni che per i neutroni separatamente, cos\u00EC che si pu\u00F2 parlare di \"nucleo magico\" quando uno dei due tipi di nucleoni raggiunge un numero magico e di \"nuclei doppiamente magici\" quando lo sono entrambi. Date alcune variazioni nel riempimento degli orbitali i numeri magici massimi sono 126 e 184 per i neutroni ma solo 114 per i protoni. Sono stati trovati dei numeri semimagici, in particolare Z=40, 16 potrebbe essere un ulteriore numero magico.Per ottenere questi numeri, il modello nucleare a shell parte da un potenziale medio al quale viene aggiunto un termine di interazione spin-orbita. Ulteriori termini empirici, dati ancora dall'accoppiamento spin-orbita nucleare (detti complessivamente \"termine di Nilsson\"), devono essere tuttavia aggiunti per riprodurre precisamente i dati sperimentali.In ogni caso i numeri magici dei nucleoni, cos\u00EC come altre propriet\u00E0, possono essere ricavati approssimando il modello con un oscillatore armonico quantistico tridimensionale con una interazione spin-orbita. Un potenziale pi\u00F9 realistico (ma anche pi\u00F9 complesso) \u00E8 il potenziale di Woods-Saxon.Igal Talmi ha successivamente sviluppato un metodo per ottenere informazioni dai dati sperimentali e lo ha utilizzato per predire energie che non erano state misurate precedentemente. Questa descrizione si \u00E8 poi sviluppata nel modello a bosoni interagenti."@it . "\u30B7\u30A7\u30EB\u30E2\u30C7\u30EB (shell model) \u3068\u306F\u539F\u5B50\u6838\u7269\u7406\u5B66\u306B\u304A\u3051\u308B\u6838\u69CB\u9020\u3092\u8A18\u8FF0\u3059\u308B\u30E2\u30C7\u30EB\u306E\u4E00\u3064\u3067\u3042\u308B\u3002\u591A\u4F53\u7CFB\u306E\u30CF\u30DF\u30EB\u30C8\u30CB\u30A2\u30F3\u3092\u3042\u308B\u6A21\u578B\u7A7A\u9593\u306E\u4E2D\u3067\u53B3\u5BC6\u306B\u5BFE\u89D2\u5316\u3057\u3001\u57FA\u5E95\u72B6\u614B\u53CA\u3073\u52B1\u8D77\u72B6\u614B\u3092\u6C42\u3081\u308B\u65B9\u6CD5\u3067\u3042\u308B\u3002\u3059\u306A\u308F\u3061\u30012\u4F53\u306E\u76F8\u4E92\u4F5C\u7528\u306E\u884C\u5217\u8981\u7D20\u3092\u3069\u306E\u3088\u3046\u306B\u6C42\u3081\u308B\u304B\u3001\u307E\u305F\u6570\u5104 - \u6570\u5341\u5104\u6B21\u5143\u306E\u884C\u5217\u3092\u3069\u306E\u3088\u3046\u306B\u5BFE\u89D2\u5316\u3059\u308B\u304B\u304C\u3001\u3053\u306E\u30E2\u30C7\u30EB\u306E\u4E2D\u5FC3\u8AB2\u984C\u3067\u3042\u308B\u3002\u6838\u529B\u3092\u51FA\u767A\u70B9\u3068\u3057\u3066\u30D6\u30EA\u30E5\u30C3\u30AF\u30CA\u30FC\u7406\u8AD6\u7B49\u306B\u3088\u308A\u6709\u52B9\u76F8\u4E92\u4F5C\u7528\u3092\u6C42\u3081\u3001\u3053\u308C\u307E\u3067\u306B\u77E5\u3089\u308C\u3066\u3044\u308B\u5B9F\u9A13\u5024\u3092\u518D\u73FE\u3059\u308B\u3088\u3046\u306B\u3044\u304F\u3064\u304B\u306E\u884C\u5217\u8981\u7D20\u3092\u6539\u826F\u3057\u3001\u30B7\u30A7\u30EB\u30E2\u30C7\u30EB\u7528\u306E\u76F8\u4E92\u4F5C\u7528\u3092\u4F5C\u308B\u3002\u305D\u306E\u4E0A\u3067\u3001\u30E9\u30F3\u30C1\u30E7\u30B9\u6CD5\u7B49\u3092\u7528\u3044\u3066\u8D85\u5927\u6B21\u5143\u306E\u30CF\u30DF\u30EB\u30C8\u30CB\u30A2\u30F3\u3092\u5BFE\u89D2\u5316\u3059\u308B\u3002\u30CF\u30DF\u30EB\u30C8\u30CB\u30A2\u30F3\u306E\u6B21\u5143\u304C\u5927\u304D\u304F\u306A\u308B\u305F\u3081\u3001\u3053\u306E\u65B9\u6CD5\u3067\u306F\u73FE\u5728\u306E\u3068\u3053\u308D\u8CEA\u91CF\u657040\u304F\u3089\u3044\u307E\u3067\u3057\u304B\u8A08\u7B97\u3067\u304D\u306A\u3044\u3002\u3057\u304B\u3057\u3001\u5E73\u5747\u5834\u8FD1\u4F3C\u3067\u306F\u7121\u8996\u3057\u305F\u591A\u4F53\u76F8\u95A2\u304C\u5165\u3063\u3066\u3044\u308B\u305F\u3081\u3001\u65B0\u3057\u3044\u5B9F\u9A13\u5024\u7B49\u3092\u3088\u304F\u8AAC\u660E\u3059\u308B\u3053\u3068\u304C\u3067\u304D\u308B\u3002"@ja . . "Model pow\u0142okowy \u2013 jeden z modeli budowy j\u0105dra atomowego w fizyce j\u0105drowej. Model utworzony na wz\u00F3r modelu pow\u0142okowego uk\u0142adu elektron\u00F3w w atomie. Model ten rozpatruje nukleony j\u0105dra jako niezale\u017Cnie poruszaj\u0105ce si\u0119 cz\u0105stki w polu j\u0105dra utworzonym przez pozosta\u0142e nukleony: protony i neutrony."@pl . . "19"^^ . . "En f\u00EDsica, el modelo de capas nuclear es una teor\u00EDa creada para describir la estructura interna del n\u00FAcleo y una din\u00E1mica para los nucleones. Es muy parecido al planteado para el caso de la corteza electr\u00F3nica \u2014el modelo de capas electr\u00F3nico\u2014 .En el caso de los electrones, ten\u00EDamos part\u00EDculas id\u00E9nticas que se agrupaban en capas de n\u00FAmeros cu\u00E1nticos espaciales distintos (n,l). El n\u00FAmero de electrones permitidos en cada capa ven\u00EDa impuesto por el principio de exclusi\u00F3n de Pauli para fermiones." . "\u30B7\u30A7\u30EB\u30E2\u30C7\u30EB (shell model) \u3068\u306F\u539F\u5B50\u6838\u7269\u7406\u5B66\u306B\u304A\u3051\u308B\u6838\u69CB\u9020\u3092\u8A18\u8FF0\u3059\u308B\u30E2\u30C7\u30EB\u306E\u4E00\u3064\u3067\u3042\u308B\u3002\u591A\u4F53\u7CFB\u306E\u30CF\u30DF\u30EB\u30C8\u30CB\u30A2\u30F3\u3092\u3042\u308B\u6A21\u578B\u7A7A\u9593\u306E\u4E2D\u3067\u53B3\u5BC6\u306B\u5BFE\u89D2\u5316\u3057\u3001\u57FA\u5E95\u72B6\u614B\u53CA\u3073\u52B1\u8D77\u72B6\u614B\u3092\u6C42\u3081\u308B\u65B9\u6CD5\u3067\u3042\u308B\u3002\u3059\u306A\u308F\u3061\u30012\u4F53\u306E\u76F8\u4E92\u4F5C\u7528\u306E\u884C\u5217\u8981\u7D20\u3092\u3069\u306E\u3088\u3046\u306B\u6C42\u3081\u308B\u304B\u3001\u307E\u305F\u6570\u5104 - \u6570\u5341\u5104\u6B21\u5143\u306E\u884C\u5217\u3092\u3069\u306E\u3088\u3046\u306B\u5BFE\u89D2\u5316\u3059\u308B\u304B\u304C\u3001\u3053\u306E\u30E2\u30C7\u30EB\u306E\u4E2D\u5FC3\u8AB2\u984C\u3067\u3042\u308B\u3002\u6838\u529B\u3092\u51FA\u767A\u70B9\u3068\u3057\u3066\u30D6\u30EA\u30E5\u30C3\u30AF\u30CA\u30FC\u7406\u8AD6\u7B49\u306B\u3088\u308A\u6709\u52B9\u76F8\u4E92\u4F5C\u7528\u3092\u6C42\u3081\u3001\u3053\u308C\u307E\u3067\u306B\u77E5\u3089\u308C\u3066\u3044\u308B\u5B9F\u9A13\u5024\u3092\u518D\u73FE\u3059\u308B\u3088\u3046\u306B\u3044\u304F\u3064\u304B\u306E\u884C\u5217\u8981\u7D20\u3092\u6539\u826F\u3057\u3001\u30B7\u30A7\u30EB\u30E2\u30C7\u30EB\u7528\u306E\u76F8\u4E92\u4F5C\u7528\u3092\u4F5C\u308B\u3002\u305D\u306E\u4E0A\u3067\u3001\u30E9\u30F3\u30C1\u30E7\u30B9\u6CD5\u7B49\u3092\u7528\u3044\u3066\u8D85\u5927\u6B21\u5143\u306E\u30CF\u30DF\u30EB\u30C8\u30CB\u30A2\u30F3\u3092\u5BFE\u89D2\u5316\u3059\u308B\u3002\u30CF\u30DF\u30EB\u30C8\u30CB\u30A2\u30F3\u306E\u6B21\u5143\u304C\u5927\u304D\u304F\u306A\u308B\u305F\u3081\u3001\u3053\u306E\u65B9\u6CD5\u3067\u306F\u73FE\u5728\u306E\u3068\u3053\u308D\u8CEA\u91CF\u657040\u304F\u3089\u3044\u307E\u3067\u3057\u304B\u8A08\u7B97\u3067\u304D\u306A\u3044\u3002\u3057\u304B\u3057\u3001\u5E73\u5747\u5834\u8FD1\u4F3C\u3067\u306F\u7121\u8996\u3057\u305F\u591A\u4F53\u76F8\u95A2\u304C\u5165\u3063\u3066\u3044\u308B\u305F\u3081\u3001\u65B0\u3057\u3044\u5B9F\u9A13\u5024\u7B49\u3092\u3088\u304F\u8AAC\u660E\u3059\u308B\u3053\u3068\u304C\u3067\u304D\u308B\u3002"@ja . . . . . "\u30B7\u30A7\u30EB\u30E2\u30C7\u30EB"@ja . . "108855816"^^ . .